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Abstract: Automatic modulation classification (AMC) using convolutional neural networks (CNNs)
is an active area of research that has the potential to improve the efficiency and reliability of wireless
communication systems significantly. AMC is the approach used in a communication system to
detect the type of modulation format at the receiver end. This paper proposes a voting-based deep
convolutional neural network (VB-DCNN) for classifying M-QAM and M-PSK signals. M-QAM
and M-PSK signal waveforms are generated and passed through the fading channel in the presence
of additive white Gaussian noise (AWGN). The VB-DCNN extracts features from the input signal
through convolutional layers, and classification is performed on these features. Multiple network
instances are trained on different subsets of training data in the VB-DCNN. A network instance
predicts the input signal during testing. Based on the votes, the final prediction is made. Different
simulation experiments are carried out to analyze the performance of the trained network, and the
DCNN is designed with the Deep Neural Network Toolbox in MATLAB. The generated frames are
divided into training, validation, and test datasets. Lastly, the classification accuracy of the trained
network is determined using test frames. The proposed model’s accuracy is near to 100% at lower
SNRs. The simulation results show the superiority of the proposed VB-DCNN compared to existing
state-of-the-art techniques.

Keywords: automatic modulation classification; deep convolutional neural network; additive white
Gaussian noise; voting-based DCNN

1. Introduction

AMC has many applications in military, civilian, software-defined radio, cognitive
radio network, and smart grid communication [1]. Recent advances in wireless commu-
nication, such as wireless power mobile edge cloud computing, have created new study
gaps, allowing academics to explore the issue of AMC [2]. AMC has been employed in
multiple-input multiple-output (MIMO) systems and deep learning methods [3–5]. AMC
may be explored further for the application era of nonorthogonal multiple access (NOMA)
and in 6G communication [6,7].

Signal processing and analysis can only be conducted when the received signal’s
modulation format is recognized. For example, by recognizing the modulation type of
the received signal in a software-defined radio (SDR)-based communication system, the
receiver can demodulate the received signal through a demodulation algorithm [8]. So, the
transmitted signal does not need to contain additional control information for informing
the receiver, which is helpful to lessen the procedure overhead. AMC is broadly divided
into two approaches:
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• The likelihood function-based decision-theoretic (DT) approach;
• The features-based pattern recognition (PR) approach.

In the DT approach, the received signal likelihood function is evaluated. Various
likelihood ratio tests (LRTs) have been employed, such as average, generalized, hybrid,
and many more. In the PR approach, there are two phases: in the first phase, various
parameters have been extracted from the received signal, and distinct features have been
selected. In the second phase, the features are fed into the classifier structure for classifying
modulation formats [9].

Due to the superior performance of the CNN in feature extraction, it is used for mod-
ulation classification. Another advantage of the CNN model is that it requires minimal
pre-processing. CNNs can achieve higher accuracy than traditional expert feature engineer-
ing. In many traditional pattern recognition methods, it is necessary to manually extract
signal features, such as instantaneous statistics, high-order statistics, time-frequency charac-
teristics, asynchronous delay sampling characteristics, etc. These features are inputs to the
classifier, such as decision trees. The support vector classifier uses these features as inputs,
such as decision trees and support vector machines. Though simple with less computation,
it shows poor performance for nonlinear problems. The CNN has a multi-layer structure,
which can better extract features of the signal, avoiding the tedious manual selection of
data features [10].

This research aims to automatically classify the received modulated signals using a
convolution neural network. In the first step, signals of several modulations are generated
by simulation and transmitted through an AWGN channel. The problem is classifying
the modulated signals at the receiver end using the CNN. In the second step, the CNN
is trained using the generated waveforms as training data. Then, the trained network is
assessed by obtaining the classification accuracy of the test frames.

1.1. Contribution of This Paper

The contributions of the proposed modulation classification scheme are as follows:

• The major goal is to automatically classify modulated signals using a voting-based
deep convolutional neural network (VB-DCNN).

• The VB-DCNN does not require prior knowledge of the symbol rate or baud rate.
Therefore, it reduces the testing framework’s execution requirements, improving
classification and processing efficiency.

• In the VB-DCNN, the size of the input signal is fixed for classification, but the length
of the actual signal is flexible. It is intended to use the complete input signal burst to
increase classification accuracy further.

1.2. Organization of This Paper

This paper is organized as follows: Section 2 demonstrates the proposed system
model of the received signal. Section 3 describes the VB-DCNN for the classification
of modulation formats. The deep network design, CNN layers, and basic principles of
the proposed voting-based fusion are comprehensively explained in this section. The
performance of the VB-DCNN is evaluated in Section 4 on various fading channels and for
different numbers of DCNN layers. Three different cases are considered to evaluate the
classifier’s performance. The paper is concluded in Section 5.

2. Related Work

Recently, deep-learning-based approaches have been proposed for modulation clas-
sification in [11,12]. The deep residual network and long short-term memory (LSTM) are
employed for modulation classification in [13]. The authors used two CNN models for
modulation classification, i.e., AlexNet and GoogleNet [14]. In [15], the authors present an
adaptive visibility graph (AVG) algorithm that can adaptively map time series into graphs,
establishing an end-to-end modulation classification framework.
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For the application of radar signals, especially in electronic reconnaissance, the authors
in [16] presented the detecting radiation signals under an intense noise background using
an X-shaped structure, i.e., X-net. For the classification of the training dataset, which
is distributed over a network without gathering the data at a centralized location, the
authors in [17] presented the decentralized-learning-based AMC (DecentAMC) along with
the regularized-modulation classification network (R-MCNet) and an innovative learning
framework (DeEnAMC).

In [18], cumulants and a blind channel estimation multi-classification algorithm based
on maximum likelihood is used to classify modulated signals. In [19], the K-nearest
neighbor algorithm and genetic programming are chosen for classifying certain modulated
signals. In [20], the authors compared the performance of different neural network models
and lowered the training complexity by lowering the input signal dimension. To improve
the efficiency of training CNNs, the authors in [21] proposed a two-step training method.

The authors proposed a denoising autoencoder classifier based on LSTM in [22] that
achieved higher accuracy at higher SNRs. The work of a CLDNN with CNN and LSTM
cascaded together [23] presents a CNN architecture for modulation classification. The
results are further improved by integrating residual and densely connected networks into
the system. To further improve accuracy, the authors presented a convolutional LSTM-
based DNN. The authors of [24,25] used the residual module and the inception structure to
extract features.

In [26], the authors employed a CNN for feature extraction and multiple kernel
maximum mean discrepancy (MK-MMD) layers to bridge the labeled source domain and
unlabeled target domain. The MK-MMD considers a four-layer CNN to bridge knowledge
from different domains to reduce the dataset bias and the labeling cost. In [27], the classifier
integrates the long short-term memory network (LSTM) with the residual neural network
(ResNet). ResNet increases deep neural network accuracy, and LSTM enhances classifier
performance by passing time series prior state information to the current state. LSTM
achieves 92% peak recognition accuracy at a very high SNR of 18 dB.

Deep learning CNN-based AMCs with new loss-function-based classification layers
have been adopted in [28]. The developed classifiers’ performance has been studied using
Adam optimizers. Eleven different modulation types have been used to train and test the
proposed classifiers for SNRs of 0 to 20 dB. The effect of the optimizer (ADAM) and loss
functions (crossentropyex-SSE) has an impact on the performance. Several deep learning
models are used in the experiment, including the CNN, the ResNet, LSTM, and the CLDNN.
As recommended in [29], the deep learning model with the highest recognition rate should
be chosen.

DLCNN feature extraction and a hybrid extreme learning machine (HELM-B) for
classification have been implemented in [30]. The authors utilized the HisarMod2019.1
dataset, and the hybrid version of ELM and bagging classifiers are presented to optimize
the weights. A lightweight one-dimensional convolutional neural network module (Oned-
imCNN) is proposed to recognize IQ features and AP features [31]. Two features are
complementary under high and low SNRs. Probabilistic principal component analysis
(PPCA) fuses the two features and proposes a one-dimensional convolution feature fusion
network (FF-Onedimcnn).

3. System Model

Figure 1 shows the proposed system model. The input signal x(n) is modulated (M-
PSK, M-FSK, and M-QAM) and transmitted over the fading channel inclusive of additive
white Gaussian noise (AWGN). The received signal can be expressed as follows:

r(n) = α(n) exp (2π f t + θ(n)) s(n) + g(n) (1)

where α(n) is the fading coefficients, s(n) is the complex base-band envelope of the signal,
f and θ are the carrier frequency and phase offsets due to different local oscillators, and
g(n) is the AWGN. The length of the received signal, i.e., r(n), is 1024× 1.
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The input span of the DCNN is normally fixed, and the length of the signal to be
classified may be much larger than this length. Aiming to use signal complete information
for better accuracy, the input signal is divided into many segments of length L. Every
segment is fed to the DCNN, and the voting-based fusion method gains the result. The
received signal r(n) of length N is segmented by sliding at the P interval and then choosing
every signal segment of span L. The segmentation of the signal is described in Equation (2)
as follows:

yi(m) = r(i− 1)P + m (2)

where m = 0, 1, 2, ..., (L− 1) and i = 1, 2, ..., κ. The signal is segmented with a length of
κ = b(N − L + 1)/Pc.

Figure 1. Proposed System Model for Voting-Based DCNN.

4. Voting-Based DCNN
4.1. Deep Convolutional Neural Network

The deep convolutional neural network is designed for the classification of modulation
formats as shown in Figure 2. The DCNN architecture comprises 28 layers, including an
input layer, convolutional layer, ReLU layer, Max pool layer, fully connected layer (FCL),
softmax layer, and classification layer. The yi(m) served as input to the DCNN layers, the
CNN represents the convolution kernel, and the following number indicates the number
of convolution kernels. The abbreviation “ReLU” stands for rectification linear activation.
The softmax denotes the maximum number of neurons; the category is the final output,
and the one-hot encoding is used for the category label. There is also a batch normalization
layer between the convolutional layer and the nonlinear activation layer; for clarity, the
layer is not depicted in Figure 2.
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Figure 2. Proposed Deep Convolutional Neural Network Layers [25].

4.2. Voting-Based Fusion

In this paper, voting-based fusion has been utilized to improve the classification
accuracy of the VB-DCNN. Segmented signals yi(m) are fed to the deep convolution neural
network; the outputs are obtained at the classification layer. The modulation type of signal
is obtained by fusing the classification results, i.e., voting-based fusion. VB fusion is the
general fusion method employing the majority wins rule. The class with the most votes is
considered the classification output [32]. The classification results are denoted Oi ∈ [1, 2, 3,
. . . , M]. From the Oi, the

vik =

{
1 if Oi = k
0 otherwise

(3)

The number of times the classification is k-th modulation is presented as follows:

zk =
κ

∑
k=1

vik (4)
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The final decision on voting-based fusion is the maximum argument of the zk, i.e.,

ΥVB = arg max
1≤j≤M

zk (5)

The proposed algorithm for the VB-DCNN classifier is given in Algorithm 1.

Algorithm 1: VB-DCNN classifier.
1 Initialize: No. of samples, Samples per Frame, Modulation type;
2 get segmented signal→ Equation (2)
3 while training == true do
4 Apply CNN1 layer
5 Apply ReLu layer
6 Apply Max-pool layer
7 Apply Average pooling layer
8 Apply Fully connected layer
9 end

10 return Modulation Class

4.3. Computational Complexity of VB-DCNN

The computational complexity of the proposed algorithm is demonstrated in Table 1.
The size of the input signal is 2× 1024× 1, it is passed through the CNN1 of size 1×
1× 16 as shown in Figure 2, and the number of parameters is (1 + 1)× (1023 + 1)× 16.
Accordingly, the output will be 2× 1024× 16 and the total number of parameters calculated
are 16× ((1× 1×) + 1), i.e., 32. The number of parameters in the Max pool layer is 32
as well. Similarly, the number of parameters at each layer is calculated using the same
procedure.

Table 1. Computational Complexity of Proposed Algorithm.

Layer No. CNN Max Pool Computations

L1 32 32 64

L2 48 48 96

L3 64 64 128

L4 96 96 192

L5 128 128 256

Total 368 368 736

5. Simulation Results

The M-PSK, M-FSK, and M-QAM signals have been considered for classification
throughout the simulations. The dataset is generated for different modulations and consists
of 10,000 samples per frame. A trained model is based on 80% of the dataset, and a test
and a validated model is based on 10% of the dataset. The performance of the proposed
VB-DCNN is also evaluated on a fading channel in the presence of AWGN. The figure of
merit (FoM) is the percentage classification accuracy (PCA). All the simulations are on the
Matlab software 2020(a) version. The specification of the PC is 16 GB of RAM with core
i-7, 2.60 GHz, a 10th-generation processor, and built-in GPU hardware. The simulation
parameters are shown in Table 2.
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Table 2. Simulation Parameters.

Parameter Value

Samples per Frame 10,000

Training Samples 80%

Validation Samples 10%

Test Samples 10%

No. of Samples 1024

Sample Rate 200 KHz

SNR [0, 5, 10] dB

Channel AWGN , Rayleigh Fading, Rician Fading

Layer of CNN 28-Layer Architecture

Modulation Schemes PSK, FSK, QAM

Iterations per Epoch 2500

Number of Epochs 10

The following are the three cases used to evaluate the performance of the proposed
classifier:

1. Case-I: M-PSK and MFSK signals;
2. Case-II: M-QAM signals;
3. Case-III: nine modulated signals.

The received signal may be a PSK or FSK signal, a QAM signal, or PSK and QAM
signals. A separate model is trained for each case to validate the efficiency of the proposed
algorithm.

5.1. Case-I: BPSK, QPSK, 8 PSK, 256 PSK, GFSK, CPFSK

The training of the VB-DCNN classifier for case-I is shown in Figure 3. The M-PSK and
M-FSK signals are trained with 3750 and 750 iterations per epoch. The training accuracy is
100% with less than 100 iterations. From Figure 3, it is evident that the classifier is trained
efficiently at 5 dB of SNR with a simulation time of 1 min and 49 s.

The testing accuracy for case-I is 100% at 5 dB of SNR, which is taken for a single
simulation. All the selected modulations are 100% classified, and the quantitative analysis
in the form of a confusion matrix is shown in Figure 4.

5.2. Case-II: 4 QAM, 8 QAM, 16 QAM, 256 QAM

The training and testing of the proposed VB-DCNN are evaluated for the QAM
modulated signals, i.e., 4 QAM, 8 QAM, 16 QAM, and 256 QAM. The validation accuracy
for case-II is 99.58% at 10 dB of SNR. The training and loss curves are shown in Figure 5,
which shows the VB-DCNN is trained perfectly for the M-QAM signals. The training time
is 1 min and 13 s, with 2500 and 500 iterations per epoch. In Figure 5, the black dashed line
shows the validation curve, the blue dotted line shows the training curve, and the blue line
shows the smoothed training curve.



Electronics 2023, 12, 1913 8 of 17

Figure 3. VB-DCNN Training for Case-I.

Figure 4. Confusion Matrix for Case-I at SNR = 5 dB.

The testing accuracy for case-II on an AWGN channel with an SNR of 10 dB is 99.47%.
The classification accuracy for 16 QAM and 256 QAM is 99.7% and 98.2%, respectively.
The classification accuracy for 4 QAM and 8 QAM is 100%. The quantitative analysis
of the proposed VB-DCNN is shown in Figure 6. Since QAM modulates amplitude and
phase, it is spectrally efficient, which is why QAM signals are hard to classify compared to
PSK signals.



Electronics 2023, 12, 1913 9 of 17

Figure 5. VB-DCNN Training for Case-II.

5.3. Case-III: Nine Modulated Signals

The joint classification of nine modulated signals, i.e., GFSK, CPFSK, BPSK, 8 PSK, 256
PSK, 4 QAM, 8 QAM, 16 QAM, and 256 QAM, is demonstrated in case-III. The validation
accuracy is approximately 99.80% at an SNR of 10 dB, as shown in Figure 7. Figure 7
shows the training accuracy and loss curves. The maximum number of iterations to train
the VB-DCNN for classifying 9 modulations is 5625, with 1125 iterations per epoch. The
simulation time is 2 min and 45 s.

The test accuracy of the proposed VB-DCNN classifier is exactly 99.68% at 10 dB of
SNR. The VB-DCNN classifier accurately classifies the GFSK, CPFSK, 8 QAM, BPSK, 8 PSK,
4 QAM, and 256 PSK. For the 16 QAM, the classifier correctly classified 976 times and it
misclassified 24 times. For the 256 QAM classification, the accuracy is 99.6% and 97.6% for
the 16 QAM signal. The confusion matrix of the VB-DCNN is shown in Figure 8.

Figure 6. Confusion Matrix for Case-II at SNR = 10 dB.
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Figure 7. VB-DCNN Training for Case-III.

Figure 8. Confusion Matrix for Case-III at SNR = 10 dB.
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5.4. Performance Evaluation with Different Layers

The performance of the VB-DCNN for different numbers of layers is shown in Figure 9
at an SNR of 10 dB. As evident from Figure 9, the classification accuracy increases as the
number of layers increases in the architecture. The classification accuracy for 28, 20, and
12 layers is 99.6%, 97.3%, and 90.2%, respectively.

5.5. VB-DCNN Performance Evaluation on Fading Channels

The performance of the VB-DCNN for nine different modulated signals is evaluated
on AWGN, Rician, and Rayleigh fading channels. The training of the VB-DCNN on the
AWGN, Rayleigh, and Rician channel models is shown in Figure 10 at SNRs of 5 and 10 dB.
The training accuracy at 10 dB of SNR of the AWGN, Rayleigh, and Rician channels is 99%,
76%, and 80%, respectively. Figure 11 shows that the training accuracy on higher SNRs is
much better than the lower SNRs. The testing accuracy of the proposed VB-DCNN on the
fading channels is also shown in Figure 10 with quantitative analysis.

The classification accuracy for case-I is exactly 100%. This is primarily because there
are six modulation classes, and the SNR considered is 5 dB. For case-II, however, the number
of modulations considered is four, while the SNR is 10 dB. As a result, we are obtaining
good classification accuracy for specific scenarios. Figure 12 illustrates that classification
accuracy is low, and almost all modulations are unclassified; this is due to the dominance
of noise over the entire signal, which contributes to poor classification accuracy. Due to
the deep neural network design and, in particular, the fusion of the features, classification
accuracy is also very high.

Figure 9. PCA vs. No. of Layers.
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Figure 10. VB-DCNN Performance Analysis on Fading Channels (SNR = 5 dB).

Figure 11. VB-DCNN Performance Analysis on Fading Channels (SNR = 10 dB).
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Figure 12. Classification Accuracy at 0 dB.

5.6. Relationship Training and Testing Accuracy

The training accuracy of case-I, i.e., BPSK, QPSK, 8 PSK, 256 PSK, GFSK, and CPFSK,
is shown in Figure 3, and the testing accuracy for case-I is shown in the form of a confusion
matrix in Figure 4.

The training accuracy of case-II, i.e., 4 QAM, 8 QAM, 16 QAM, 256 QAM, is shown in
Figure 5, and the testing accuracy for case-II is shown in the form of a confusion matrix in
Figure 6.

The training accuracy of case-III is shown in Figure 7, and the testing accuracy for
case-III is shown as a confusion matrix in Figure 8.

The relationship between testing and training accuracy for all the proposed cases is
shown in Table 3. As clear from Table 3, there is a close relationship between the training
and testing accuracy, suggesting that the proposed model is not over-fitted or under-fitted.

Table 3. Training and Testing Accuracy.

CASE-I

SNR Training Accuracy Testing Accuracy

5 dB 100% 100%

CASE-II

SNR Training Accuracy Testing Accuracy

10 dB 99.58% 99.47%

CASE-III

SNR Training Accuracy Testing Accuracy

10 dB 99.80% 99.68%
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5.7. Comparative Analysis of VB-DCNN

The classification accuracy of the proposed VB-DCNN with the state-of-the-art tech-
niques is shown in Table 4. The number of samples is 1024, with an SNR of 0 dB and all
the results in % classification accuracy. From Table 4, it is clear that the proposed classifier
performs much better with the existing techniques, and in many cases, the classification
accuracy approaches 100%.

As shown in Table 4, in [33], the authors present modulation classification based on
CNN in the presence of interfering signals. The authors used ten different modulations for
classification from the dataset of RadioML2016. The classification accuracy is presented in
two scenarios: 5-class and 10-class problems. The model in [33] gives 70.9% accuracy while
our proposed classifier gives a better accuracy of 100% at the same SNR, i.e., 0 dB.

In [34], the authors used the deep convolutional neural network to classify M-PSk
and M-QAM modulation forms. The authors used a multi-stream comprehensive network
structure to extract richer features. The authors classified the modulation formats at 8 dB of
SNR and did not consider the higher, higher-order QAMs and PSKs. Convolution neural
networks (CNNs) and gate rate units (GRUs) are used in a hybrid parallel structure to
extract, respectively, spatial and temporal data [35]. The accuracy of [35] for the GFSK is
not good at 0 dB of SNR, while for BPSK and CPFSK, the classifier accuracy is 100%. In [36],
the authors use the cuckoo search algorithm to optimize the classification accuracy of the
GFN-based modulation classifier. The authors employed various modulation techniques,
but the classification accuracy is around 96% at 0 dB of SNR.

While comparing with other references, the classification accuracy of [34–36] is 98%,
100%, and 96.52%, respectively, for the BPSK modulation case scenario. The classification
accuracy for the higher-order modulations, i.e., 256 PSK and 256 QAM, is above 80%, which
is quite good at lower SNRs, i.e., 0 dB. To the best of our knowledge, there is no such scheme
that classifies the higher-order PSK and QAM signals. The study [36] only considers the
BPSK, 8 PSK, QAM, and 8 QAM signals for the classification. From Table 4, it is found that
the proposed classifier for the single run gives 100% classification accuracy.

Table 4. Comparison of Proposed VB-DCNN Classifier with State-of-the-Art Existing Techniques.

Modulation [33] [34] [35] [36] VB-CNN

BPSK 70.9 98 100 96.52 100

8 PSK 44.6 98 97 97.62 100

256 PSK - - - - 83

QAM - - - 96.42 100

8 QAM - - - 96.98 100

256 QAM - - - - 89

GFSK 88.8 - 94 - 100

CPFSK 96.9 - 100 - 100
Classification accuracy shown in Table 4 is in %.

Simulations indicate that the proposed VB-DCNN performs better, but some limita-
tions exist. The VB-DCNN requires large amounts of high-quality training data to achieve
higher accuracy. Initially, training requires a careful selection of the parameters and a signif-
icant amount of complexity compared to the single-CNN architecture. However, the model
is trained once, so the complexity can be a trade-off with the performance. Implementing
the training with fewer resources may negatively affect performance.

6. Conclusions

This research work investigates the problem of higher-order modulation classification
using a voting-based deep convolutional neural network. Raw signals are fed into the



Electronics 2023, 12, 1913 15 of 17

VB-DCNN classifier, passing the signal through different independent CNN architectures.
The inputs from various layers are finally computed based on the majority of the votes.
This results in better classification and efficient utilization of the entire signal spectrum.
For the evaluation of the suggested classifier, different layers have been suggested, and
it is found that increasing layers will give higher classification accuracy and vice versa.
In addition, the proposed classification algorithm is tested on various fading channels
with different SNRs. A performance comparison is conducted between the VB-DCNN
classifier and current state-of-the-art techniques, and in a specific scenario, the accuracy
of the classifier is close to 100%. The classification accuracy may be further improved by
employing different window functions in the DCNN and developing CNNs that are robust
to noise and interference in the future. The feature focus might be developing CNN-based
classifiers that can operate effectively in resource-constrained environments, potentially
using pruning or quantization compression techniques.
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Notation

α(n) Fading Coefficients
κ Length of Segmented Signal
Oi i-th Classification Class
ΥVB Voting-based Fusion
L length of the signal
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